Lpconvergence rates of solutions for n -dimensional quasilinear damped wave equation
نویسندگان
چکیده
منابع مشابه
Exponential decay of solutions of a nonlinearly damped wave equation
The issue of stablity of solutions to nonlinear wave equations has been addressed by many authors. So many results concerning energy decay have been established. Here in this paper we consider the following nonlinearly damped wave equation utt −∆u+ a(1 + |ut|)ut = bu|u|p−2, a, b > 0, in a bounded domain and show that, for suitably chosen initial data, the energy of the solution decays exponenti...
متن کاملGlobal existence, stability results and compact invariant sets for a quasilinear nonlocal wave equation on $mathbb{R}^{N}$
We discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of Kirchhoff Type [ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+delta u_{t}=|u|^{a}u,, x in mathbb{R}^{N} ,,tgeq 0;,]with initial conditions $u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; delta geq 0$ and $(phi (x))^{-1} =g (x)$ is a positive function lying in $L^{N/2}(mathb...
متن کاملBoundary controllability for the quasilinear wave equation
We study the boundary exact controllability for the quasilinear wave equation in the higher-dimensional case. Our main tool is the geometric analysis. We derive the existence of long time solutions near an equilibrium, prove the locally exact controllability around the equilibrium under some checkable geometrical conditions. We then establish the globally exact controllability in such a way tha...
متن کاملPositive solutions for a quasilinear Schrödinger equation
We consider the quasilinear problem −εpdiv(|∇u|p−2∇u) + V (z)up−1 = f(u) + up−1, u ∈W (R ), where ε > 0 is a small parameter, 1 < p < N , p∗ = Np/(N − p), V is a positive potential and f is a superlinear function. Under a local condition for V we relate the number of positive solutions with the topology of the set where V attains its minimum. In the proof we apply Ljusternik-Schnirelmann theory...
متن کاملModulating pulse solutions for quasilinear wave equations
This paper presents an existence proof for symmetric modulating pulse solutions of a quasilinear wave equation. Modulating pulse solutions consist of a pulse-like envelope advancing in the laboratory frame and modulating an underlying wave-train; they are also referred to as ‘moving breathers’ since they are time-periodic in a moving frame of reference. The problem is formulated as an infinite-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.10.042